Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

The Response of Middle Thermosphere (∼160 km) Composition to the November 20 and 21, 2003 Superstorm

TIMED/GUVI limb measurements and first-principles simulations from the Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIEGCM) are used to investigate thermospheric atomic oxygen (O) and molecular nitrogen (N2) responses in the middle thermosphere on a constant pressure surface (∼160 km) to the November 20 and 21, 2003 superstorm. The consistency between GUVI observations and TIEGCM simulated composition changes allows us to utilize TIEGCM outputs to investigate the storm-time behaviors of O and N2 systematically. Diagnostic analysis shows that horizontal and vertical advection are the two main processes that determine the storm-induced perturbations in the middle thermosphere. Molecular diffusion has a relatively smaller magnitude than the two advection processes, acting to compensate for the changes caused by the transport partly. Contributions from chemistry and eddy diffusion are negligible. During the storm initial and main phases, composition variations at high latitudes are determined by both horizontal and vertical advection. At middle-low latitudes, horizontal advection is the main driver for the composition changes where O mass mixing ratio decreases (N2 mass mixing ratio increases); whereas horizontal and vertical advection combined to dominate the changes in the regions where increases ( decreases). Over the entire storm period, horizontal advection plays a significant role in transporting high-latitude composition perturbations globally. Our results also demonstrate that storm-time temperature changes are not the direct cause of the composition perturbations on constant pressure surfaces.

Yu, Tingting; Wang, Wenbin; Ren, Zhipeng; Cai, Xuguang; Yue, Xinan; He, Maosheng;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029449

atomic oxygen; GUVI limb observations; middle thermosphere; molecular nitrogen; storm-time perturbations; TIEGCM

2014

Global distribution of atomic oxygen in the mesopause region as derived from SCIAMACHY O( 1 S) green line measurements

A new data set of atomic oxygen abundance in the upper mesosphere and lower thermosphere is presented. The data are derived from the nighttime atomic oxygen green line limb emission measurements of the SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) instrument on the European Environmental Satellite. The temporal coverage is October 2002 until April 2012, and the latitudinal extent is 50\textdegreeS to 80\textdegreeN at 10 P.M. local time. This data set is compared to other satellite data sets, in particular to recently published data of SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and the Mass Spectrometer and Incoherent Scatter model. SCIAMACHY atomic oxygen peak abundances are typically 3\textendash6\texttimes1011 mol/cm3 at the atomic oxygen maximum region, depending on latitude and season. These values are similar to previous values based on chemiluminescence measurements of the atomic oxygen three-body recombination reaction but at least 30\% lower than atomic oxygen abundances obtained from SABER.

Kaufmann, M.; Zhu, Y.; Ern, M.; Riese, M.;

Published by: Geophysical Research Letters      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/grl.v41.1710.1002/2014GL060574

atomic oxygen; energy balance; mesopause; remote sensing data; SCIAMACHY



  1